
TSIP and NMEA Application
Developer’s Guide

L
Revision A

May 2005

Corporate Office

Trimble Navigation Limited
645 North Mary Avenue
Post Office Box 3642
Sunnyvale, CA 94088-3642
U.S.A.
Phone: +1.408.481.7920
Toll-free: +1.800.865.4851
www.trimble.com

Support Offices

For support in Europe, call:
+44.1256.746.221
or send a fax to:
+44.1256.760.148
For support outside Europe, call:
+1.408.481.8786
or send a fax to:
+1.408.481.2011

Copyright

© 2005, Trimble Navigation Limited. All rights
reserved.

Trademarks

The Sextant logo with Trimble is a trademark of
Trimble Navigation Limited, registered in the
United States Patent and Trademark Office.

The Globe & Triangle, Trimble, FirstGPS, and
Colossus are trademarks of Trimble Navigation
Limited.

All other trademarks are the property of their
respective owners.

Release Notice

The following limited warranties give you specific
legal rights. You may have others, which vary
from state/jurisdiction to state/jurisdiction. The
following limited warranties give you specific
legal rights. You may have others, which vary
from state/jurisdiction to state/jurisdiction.

Software and Firmware License,
Limited Warranty

This Trimble software and/or firmware product
(the “Software”) is licensed and not sold. Its use is
governed by the provisions of the applicable End
User License Agreement (“EULA”), if any,
included with the Software. In the absence of a
separate EULA included with the Software
providing different limited warranty terms,
exclusions and limitations, the following terms
and conditions shall apply. Trimble warrants that
this Trimble Software product will substantially
conform to Trimble’s applicable published
specifications for the Software for a period of
ninety (90) days, starting from the date of
delivery.

Warranty Remedies

Trimble's sole liability and your exclusive remedy
under the warranties set forth above shall be, at
Trimble’s option, to repair or replace any Product
or Software that fails to conform to such warranty
("Nonconforming Product") or refund the
purchase price paid by you for any such
Nonconforming Product, upon your return of any
Nonconforming Product to Trimble in accordance
with Trimble’s standard return material authorization
procedures.

Warranty Exclusions and Disclaimer

These warranties shall be applied only in the event
and to the extent that: (i) the Products and
Software are properly and correctly installed,
configured, interfaced, maintained, stored, and
operated in accordance with Trimble's relevant
operator's manual and specifications, and; (ii) the
Products and Software are not modified or
misused. The preceding warranties shall not apply
to, and Trimble shall not be responsible for defects
or performance problems resulting from (i) the
combination or utilization of the Product or
Software with products, information, data,
systems or devices not made, supplied or specified
by Trimble; (ii) the operation of the Product or
Software under any specification other than, or in
addition to, Trimble's standard specifications for
its products; (iii) the unauthorized modification or
use of the Product or Software; (iv) damage
caused by accident, lightning or other electrical
discharge, fresh or salt water immersion or spray;
or (v) normal wear and tear on consumable parts
(e.g., batteries).

THE WARRANTIES ABOVE STATE TRIMBLE'S
ENTIRE LIABILITY, AND YOUR EXCLUSIVE
REMEDIES, RELATING TO PERFORMANCE OF
THE PRODUCTS AND SOFTWARE. EXCEPT AS
OTHERWISE EXPRESSLY PROVIDED HEREIN,
THE PRODUCTS, SOFTWARE, AND
ACCOMPANYING DOCUMENTATION AND
MATERIALS ARE PROVIDED “AS-IS” AND
WITHOUT EXPRESS OR IMPLIED WARRANTY
OF ANY KIND BY EITHER TRIMBLE
NAVIGATION LIMITED OR ANYONE WHO HAS
BEEN INVOLVED IN ITS CREATION,
PRODUCTION, INSTALLATION, OR
DISTRIBUTION INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. THE STATED EXPRESS
WARRANTIES ARE IN LIEU OF ALL
OBLIGATIONS OR LIABILITIES ON THE PART
OF TRIMBLE ARISING OUT OF, OR IN
CONNECTION WITH, ANY PRODUCTS OR
SOFTWARE. SOME STATES AND
JURISDICTIONS DO NOT ALLOW LIMITATIONS
ON DURATION OR THE EXCLUSION OF AN
IMPLIED WARRANTY, SO THE ABOVE
LIMITATION MAY NOT APPLY TO YOU.

TRIMBLE NAVIGATION LIMITED IS NOT
RESPONSIBLE FOR THE OPERATION OR
FAILURE OF OPERATION OF GPS
SATELLITES OR THE AVAILABILITY OF
GPS SATELLITE SIGNALS.

Limitation of Liability

TRIMBLE’S ENTIRE LIABILITY UNDER ANY
PROVISION HEREIN SHALL BE LIMITED TO
THE GREATER OF THE AMOUNT PAID BY YOU
FOR THE PRODUCT OR SOFTWARE LICENSE OR
U.S.$25.00. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL TRIMBLE OR ITS SUPPLIERS BE
LIABLE FOR ANY INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES
WHATSOEVER UNDER ANY CIRCUMSTANCE
OR LEGAL THEORY RELATING IN ANY WAY TO
THE PRODUCTS, SOFTWARE AND
ACCOMPANYING DOCUMENTATION AND
MATERIALS, (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF
BUSINESS PROFITS, BUSINESS INTERRUPTION,
LOSS OF BUSINESS INFORMATION, OR ANY
OTHER PECUNIARY LOSS), REGARDLESS
WHETHER TRIMBLE HAS BEEN ADVISED OF
THE POSSIBILITY OF ANY SUCH LOSS AND
REGARDLESS OF THE COURSE OF DEALING
WHICH DEVELOPS OR HAS DEVELOPED
BETWEEN YOU AND TRIMBLE. BECAUSE
SOME STATES AND JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF
LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES, THE ABOVE
LIMITATION MAY NOT APPLY TO YOU.

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 4

Table of Contents

1 INTRODUCTION __6
2 SYSTEM REQUIREMENTS ___6
3 APPLICABLE DOCUMENTS __6
4 DEVELOPER’S KIT DIRECTORY STRUCTURE _________________________________6
5 DEVELOPING MULTI-PROTOCOL APPLICATIONS ______________________________7

5.1 Overview of the Sample Source Code _______________________________7
6 DEVELOPING TSIP APPLICATIONS __7

6.1 Introduction to the Sample Source Code _____________________________8
6.2 Receiving Packets___8
6.3 Parsing Packets and Extracting Data Values __________________________8
6.4 Processing Packet Data Values ____________________________________9

7 DEVELOPING NMEA APPLICATIONS_______________________________________9
7.1 Introduction to the Sample Source Code _____________________________9
7.2 Receiving Packets___9
7.3 Parsing Packets and Extracting Data Values __________________________9
7.4 Processing Packet Data Values ___________________________________10
7.5 Formatting and Sending NMEA Packets_____________________________10

8 DEMO APPLICATION FOR WINDOWS ______________________________________11
8.1 Introduction ___11
8.2 Rebuilding the Demo Application __________________________________11
8.3 Using the Demo Application ______________________________________12

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 5

Release Information

The following changes have been made to this document.

Date Revision Change

May 2005 A First release.

January 2007 B Added NMEA support

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 6

1 Introduction

This developer’s guide provides information for a software engineer to implement
an application to interface to a Trimble GPS receiver communicating via the
Trimble Standard Interface Protocol (TSIP) and/or the National Marine Electronics
Association (NMEA) protocol.

The document provides detailed descriptions of the included source code that can
be adapted to the user application. In addition to this document, all the necessary
components are also described and documented throughout the provided source
code.

The sample source code can be compiled on a Windows PC into a demo application
to interface to the GPS receiver via a serial COM port on the PC.

2 System Requirements

• The source code can be perused on any platform using a text editor.

• Microsoft Visual C++ v6.0 or .NET 2003 v7.1 is required to compile the sample
source code into an executable program (demo application).

• The demo application provided as part of this developer’s kit or compiled from
the provided source code can run on Microsoft Windows XP, 2000, or 98.

3 Applicable Documents

[R-1] TSIP Protocol Reference (included as part of the product’s user’s manual)
[R-2] NMEA Protocol Reference (relevant portions included as part of the
product’s user’s manual. The full reference is available for purchase from
nmea.org)

4 Developer’s Kit Directory Structure

The developer’s kit has the following folder/directory structure:
.\---+
 |
 +--- Documents
 |
 +--- Executables
 |
 +--- Source Code

• Documents contains this guide and other relevant documentation (if applicable).

• Executables contains TsipDemo.exe which is a Windows GUI program built
from the sample source code using Microsoft Visual C++. Refer to Section 8 for
details on how to configure and run this program.

• Source Code contains various source files that show how to develop a TSIP
and/or NMEA application. Section 5 provides more details about files in this
directory.

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 7

5 Developing Multi-Protocol Applications
The demo application is implemented as a multi-protocol application. This means
that it can monitor both TSIP and NMEA simultaneously. This is possible when the
supported protocols use separate packet delimiter characters, generally don’t
contain each other’s delimiters as part of the payload and there are generally few
communication errors.

Supporting multiple protocols at the same time involves:
1. Receive bytes from the communication interface, checking each if it is the start

of a packet for one of the supported protocols.
2. Once the start of a packet and the associated protocol have been identified, feed

bytes into the parser for that protocol until it has received the full message.
3. Extract the data values from the received packet.
4. Pass the data values to the application for processing (e.g. to display on a

screen, log to a file, etc)

Repeat the above steps for each received packet.

5.1 Overview of the Sample Source Code
The parsing-portion of the sample source code is arranged into three separate
classes:

• CMetaParser. Handles the support for multiple protocols, delegating the actual

work to the specific protocol parser classes.
• CTsipParser. A utility-class that handles the TSIP-specific packet parsing.
• CNmeaParser. A utility-class that handles the NMEA-specific packet parsing.

The MetaParser handles the reading of bytes from the serial port and feeds the read
characters into its TsipParser and NmeaParser as appropriate (refer to
ReceiveAndParsePkt() in MetaParser.cpp). An object of this class is created and
used by the Demo application to display various TSIP and NMEA data in a small
window on the PC screen.

The above steps are performed in the file TsipWindow.cpp in the function
MonitorPort(). This function runs continuously in a thread and uses the
CMetaParser object to complete Steps 1-3. After that, it performs Step 4 by passing
the output values (formatted as an ASCII string) to the main window to be
displayed on the screen. Section 8 provides more details about this application.

If you only plan to support one protocol in your application, the functionality
provided by the MetaParser can be moved to the code handling the chosen protocol.

6 Developing TSIP Applications

If you only plan on supporting TSIP, the steps reduce to:
1. Receive and retrieve a TSIP packet from the communication interface. The

interface is typically a serial communication port (UART).

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 8

2. Extract data values from the TSIP packet.
3. Pass the data values to the application for processing (e.g. to display on a

screen, log to a file, etc).

Repeat the above steps for each received TSIP packet.

6.1 Introduction to the Sample Source Code
The source code that showcases receiving and processing TSIP packets is located in
the Source Code directory in the file TsipParser.cpp. The TSIP processing
functionality is implemented as a C++ class CTsipParser in this file. However, the
individual class methods can be easily converted to regular C routines if required.
The CTsipParser class contains routines necessary to receive a TSIP packet, parse
it, and extract individual data values. An object of this class is created and used by
the CMetaParser object to parse TSIP data.

6.2 Receiving Packets
Refer to the functions ReceiveByte() in TsipParser.cpp and ReceiveAndParsePkt()
in MetaParser.cpp. They shows how to retrieve a TSIP packet by reading bytes
from a serial port. The serial port in this example is a pointer to a C++ class
encapsulating functionality of a Windows serial port. In the case of an embedded C
application, however, this should be replaced by a reference to the used serial
driver.

Note: one of the assumptions in this code is that the serial driver function Read()
actually blocks the calling task/thread until a data byte is received on the port. The
ReceiveAndParsePkt() routine is written with that assumption in mind. If the Read()
function of your particular serial port driver is non-blocking and returns
immediately regardless of whether a valid data byte was retrieved from the port or
not, ReceiveAndParsePkt() needs to be modified to take that behavior into account.

Receiving a valid TSIP packet is done in ReceiveByte() as a state machine. The state
machine approach is used to properly separate consecutive TSIP packets and to take
care of stuffed bytes. Refer to the TSIP reference manual for more information on
the TSIP protocol packet structure.

6.3 Parsing Packets and Extracting Data Values
In the previous step, the function ReceiveByte() filled a specified memory buffer
with a valid TSIP packet and returned the TSIP packet size. This TSIP packet now
needs to be parsed, which is handled by the function ParsePkt() in TsipParser.cpp.
This function first extracts the packet ID from the packet buffer and then passes
control to specific TSIP parsers based on the packet ID. The sample source code in
TsipParser.cpp provides examples of parsing most TSIP packets that can be
automatically output by any Trimble GPS receiver.

Each individual parser function (e.g. Parse0x41() for TSIP 0x41 processing)
performs the following actions.

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 9

1. The parser checks that the number of data bytes in the packet matches the
known number of data bytes as indicated in the TSIP reference manual.

2. Next, the parser extracts values of different data types from the packet buffer.

The packet buffer is passed in using a pointer to a byte string. However, the
buffer may contain values of different types of data such as a single precision
floating point number or a 32-bit integer. To extract these values from the
buffer, a set of data value extraction routines are provided in the file
TsipParser.cpp. These routines are: GetShort(), GetUShort(), GetLong(),
GetULong(), GetSingle(), and GetDouble().

3. Finally, the parser formats the extracted data values into an ASCII string for

visual display in the program window for use in the TSIP Demo application. In
the case of an embedded user application, this would be modified as required by
the application that uses the GPS data (e.g. display on an LCD screen, log to a
file, etc).

6.4 Processing Packet Data Values
In the case of the TSIP Demo application, the function ParsePkt() in
TsipParser.cpp returns an ASCII-formatted string containing the extracted TSIP
data values. The actual user application typically uses these values in a different
fashion to suit specific application requirements.

7 Developing NMEA Applications
Developing an NMEA application is very similar to developing a TSIP application.
All the basic steps are the same, but the actual protocol format differs somewhat.
Please refer to section 6, Developing TSIP Applications for the outline of these
steps.

7.1 Introduction to the Sample Source Code
The sample code handling NMEA is in NmeaParser.cpp. The structure of the
CNmeaParser class is very similar to the CTsipParser class, but the functions have
been adapted for NMEA.

7.2 Receiving Packets
The functional structure for receiving NMEA packets is identical to that for
receiving TSIP packets, so please refer to that section while referring to the code in
NmeaParser.cpp instead of TsipParser.cpp.

7.3 Parsing Packets and Extracting Data Values
The ParsePkt() function in NmeaParser.cpp handles the parsing of the received
packets. It:

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 10

• Checks the checksum of the received packet
• Identifies which specific NMEA packet parsing function is to be invoked
• Returns an ASCII-formatted string containing the result.

The individual NMEA packet parsing functions have very similar structure. They
read off the fields in the packet using the GetNextFieldXXX() functions and puts
the results in local variables.

7.4 Processing Packet Data Values
After decoding all the data, the individual NMEA packet parsing functions pretty-
print the contents to an ASCII-string that is returned to the calling function for
display in the program window. The actual user application typically uses these
values in a different fashion to suit specific application requirements.

7.5 Formatting and Sending NMEA Packets
The CNmeaParser class can send a sample packet to the connected GPS device with
the SendPkt() function. This function is intended to demonstrate how NMEA
packets can be formatted using a set of helper functions, using the Trimble
proprietary VR packet as a sample.

The general outline for composing an NMEA packet is:

• Format the header. See FormatNmeaMsgHead() in NmeaParser.cpp.
• Add the relevant fields that constitute the payload of the packet. See

PutNextField() in NmeaParser.cpp. (Currently there is only one such helper
function implemented, but it can be extended analogously to the
GetNextFieldXXX() set of functions)

• Format the tail of the packet, including the checksum. See
FormatNmeaMsgTail() in NmeaParser.cpp

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 11

8 Demo Application for Windows

8.1 Introduction
The source code provided with the TSIP and NMEA Application Developer’s Kit
can be compiled on a Windows PC using Microsoft Visual C++ development
environment. The generated executable can be used to connect to a Trimble GPS
receiver, receive TSIP and NMEA packets automatically sent by the receiver, and
display the packet data in a user-readable format in a window.

A pre-compiled version of the demo application is provided in the Executables
directory. Refer to Section 8.3 for details on how to configure and run the program.

Figure 1. Demo application user interface

8.2 Rebuilding the Demo Application
• If using Microsoft Visual C++ v6.0, load the workspace file TsipDemo.dsw

located in the Source Code directory. Choose Build | Rebuild All to generate
TsipDemo.exe in the Executables directory.

• If using Microsoft Visual .NET 2003 v7.1, load the solution file TsipDemo.sln
located in the Source Code directory. Choose Build | Rebuild TsipDemo to
generate TsipDemo.exe in the Executables directory.

TSIP and NMEA Application Developer’s Guide L

Trimble Confidential 12

8.3 Using the Demo Application
Requirements
• A Trimble GPS receiver with automatic TSIP and/or NMEA output. The output

port of the GPS receiver must be connected to a COM port on a Windows PC.

Configuring and Running the Program
1. Start TsipDemo.exe in the Executables directory.
2. Click on the COM… button, choose the COM port to which the output port of

the Trimble GPS receiver is connected, and set the communication parameters
as appropriate. Refer to the product manual for details on the default
communication parameter settings.

3. Click on the Start button. You should see periodic output similar to the one
shown in Figure 1 above.

Using Program Features
1. To log the received data as either binary (raw) data or as ASCII-formatted

strings (as displayed in the output window), click on the Log… button, select
appropriate checkboxes and files names and click Start Logging. The data will
be logged in the directory where TsipDemo.exe is located.

2. To clear the output window, click on the Clear button.
3. To pause/resume the output in the window, toggle the Pause button.
4. To send an NMEA sample packet, click the NMEA pkt button.

	1 Introduction
	2 System Requirements
	3 Applicable Documents
	4 Developer’s Kit Directory Structure
	5 Developing Multi-Protocol Applications
	5.1 Overview of the Sample Source Code

	6 Developing TSIP Applications
	6.1 Introduction to the Sample Source Code
	6.2 Receiving Packets
	6.3 Parsing Packets and Extracting Data Values
	6.4 Processing Packet Data Values

	7 Developing NMEA Applications
	7.1 Introduction to the Sample Source Code
	7.2 Receiving Packets
	7.3 Parsing Packets and Extracting Data Values
	7.4 Processing Packet Data Values
	7.5 Formatting and Sending NMEA Packets

	8 Demo Application for Windows
	8.1 Introduction
	8.2 Rebuilding the Demo Application
	8.3 Using the Demo Application

